Sabtu, 21 Februari 2009

ELECTRONICS

For personal-use electronic devices, see consumer electronics



Surface mount electronic components



A breadboard with a completed electronic circuit
Electronics refers to the flow of charge (moving electrons) through nonmetal conductors (mainly semiconductors), whereas electrical refers to the flow of charge through metal conductors. For example, flow of charge through silicon, which is not a metal, would come under electronics; whereas flow of charge through copper, which is a metal, would come under electrical. This distinction started around 1906 with the invention by Lee De Forest of the triode. Until 1950 this field was called "Radio techniques" because its principal application was the design and theory of radio transmitters, receivers and vacuum tubes.
The study of semiconductor devices and related technology is considered a branch of physics whereas the design and construction of electronic circuits to solve practical problems comes under electronics engineering. This article focuses on engineering aspects of electronics.
Electronic devices and components
An electronic component is any physical entity in an electronic system whose intention is to affect the electrons or their associated fields in a desired manner consistent with the intended function of the electronic system. Comple an amplifier, radio receiver, or oscillator). Components may be packaged singly or in more complex groups as integrated circuits. Some common electronic components are capacitors, resistors, diodes, transistors, etc.
Types of circuits
Analog circuits


Hitachi J100 adjustable frequency drive chassis.
Most analog electronic appliances, such as radio receivers, are constructed from combinations of a few types of basic circuits. Analog circuits use a continuous range of voltage as opposed to discrete levels as in digital circuits.
The number of different analog circuits so far devised is huge, especially because a 'circuit' can be defined as anything from a single component, to systems containing thousands of components.
Analog circuits are sometimes called linear circuits although many non-linear effects are used in analog circuits such as mixers, modulators, etc. Good examples of analog circuits include vacuum tube and transistor amplifiers, operational amplifiers and oscillators.
Some analog circuitry these days may use digital or even microprocessor techniques to improve upon the basic performance of the circuit. This type of circuit is usually called "mixed signal."
Sometimes it may be difficult to differentiate between analog and digital circuits as they have elements of both linear and non-linear operation. An example is the comparator which takes in a continuous range of voltage but puts out only one of two levels as in a digital circuit. Similarly, an overdriven transistor amplifier can take on the characteristics of a controlled switch having essentially two levels of output.
Digital circuits
Digital circuits are electric circuits based on a number of discrete voltage levels. Digital circuits are the most common physical representation of Boolean algebra and are the basis of all digital computers. To most engineers, the terms "digital circuit", "digital system" and "logic" are interchangeable in the context of digital circuits. Most digital circuits use two voltage levels labeled "Low"(0) and "High"(1). Often "Low" will be near zero volts and "High" will be at a higher level depending on the supply voltage in use. Ternary (with three states) logic has been studied, and some prototype computers made.
Computers, electronic clocks, and programmable logic controllers (used to control industrial processes) are constructed of digital circuits. Digital Signal Processors are another example.
Building-blocks:
• Logic gates
• Adders
• Binary Multipliers
• Flip-Flops
• Counters
• Registers
• Multiplexers
• Schmitt triggers
Highly integrated devices:
• Microprocessors
• Microcontrollers
• Application-specific integrated circuit (ASIC)
• Digital signal processor (DSP)
• Field-programmable gate array (FPGA)

Tidak ada komentar:

Posting Komentar